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On the dispersion relation of random gravity waves. 
Part 2. An experiment 
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Random waves are generated by wind in the first half of a wind-wave flume. The 
latter half of the flume is kept free from wind to measure the waves unaffected by the. 
wind and wind-generated current. The random waves in the latter area are measured 
with a linear array of wave gauges, and their phase velocities and coherence5 are 
determined by a usual technique of the cross-spectral analysis. The measured resulhs 
are compared with the nonlinear theory of two-dimensional random waves, which 
has been presented in part 1 of this paper (Masuda,Kuo & Mitsuyasu 1979). Agreement 
between the theory and the experiment is satisfactory, and observed characteristics 
of the phase velocity and coherence of the spectral components can be attributed to 
the effects of the nonlinearity and angular dispersion of the random waves. 

1. Introduction 
The linear theory of random waves, which assumes the wave field composed of an 

nfinite number of free waves of random phases, is a powerful tool for describing 
ocean waves. In the strict sense, however, the equations describing water waves are 
nonlinear, which introduces a number of interesting phenomena into the random 
wave field; generation of forced (bounded) waves (Tick 1959); the energy transfer 
among wave components (Phillips 1960; Hasselmann 1962); and phase velocity effects 
(Longuet-Higgins & Phillips 1962). In recent years much interest has been paid to the 
nonlinear dispersion relation in a random wave field (Ramamonjiarisoa 1974; Huang 
&, Tung 1976, 1977; Weber & Barrik 1977; Barrik & Weber 1977). This is perhaps due 
to the increasing utilization of remote sensing techniques in ocean wa,ve studies. The 
dispersion relation is needed to relate the spatial characteristics measured with remote 
sensors to the temporal characteristics measured by conventional methods. 

This paper is concerned with the dispersion relation of wind waves. It should be 
mentioned, however, that the phase velocity of wind waves in the generation area is 
also affected by the wind and wind-generated current (Shemdin 1972; Kato 1974). 

To sum up the problem, the phase velocity of the spectral component of the wind 
waves is affected by the following factors: 

( 1 )  nonlinearity of the wave motion; 
(2) wind pressure exerted on the wave surface; 
(3) drift current generated by the wind; 
(4) angular dispersion of the spectral component. 
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FIGURE 1. Schematic diagram of the wind-wave flume (units in cm). 

More precisely, the nonlinearity of the wave motion influences the wave velocity in 
two ways: (i) to increase the phase velocity of the free waves in a similar way as in 
Stokes waves; and (ii) to generate the bounded secondary waves which propagate 
approximately twice as fast as the corresponding frequency component (free waves). 
In  many cases, the effect of the wind pressure is much smaller than that of other 
factors. The influence of the drift current on the phase velocity may be very small for 
ocean waves, but it can be important for laboratory wind waves in the generation area 
because the wave velocity in the latter case is not so large as to make the current 
velocity negligible. Angular dispersion of the spectral component also influences the 
measured wave velocity in two ways: (i) the influence on the nonlinear interaction 
among spectral components (Masuda, Kuo & Mitsuyasu 1979) and (ii) the contribu- 
tions to the cross-spectra, from which the wave velocity is determined (Yefimov, 
Solov’yev & Khristoforov 1972). 

I n  order to study the effects of the nonlinearity and angular dispersion of waves on 
the phase velocities of spectral components, we have analysed the data of laboratory 
wind waves in the decay area where the wind and wind-generated current are absent. 
Measured results are compared with the nonlinear theory of two-dimensional random 
waves which has been presented in part 1 of this paper (Masuda et al. 1979; herein- 
after referred to as I). 

2. Equipment and procedure 
Wind-wave *flume 

The measurements were made in a wind-wave flume 13.4 m long, 0.6 m wide and 0.8 m 
high. Water depth was kept 0.365 m throughout the experiment. Figure 1 shows the 
experimental arrangement. Wind waves were generated in the first half of the flume; 
the latter half of the flume was kept free from wind to measure the random wave 
field unaffected by the wind and drift current. The latter half of the flume was made 
airtight to eject the air flow smoothly from the ceiling gap a t  the middle part of the 
flume. It was confirmed that the drift current attenuates very rapidly in the decay 
area and is negligible a t  the location of the wave measurements. 
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Wave measurements 

Waves were measured by using a linear array of twelve wave gauges aligned equi- 
distantly with 4 cm intervals except for the last gauge (figure 1).  Each probe of the 
wave gauge is of resistance-type, which consists of two parallel platinum wires with 
a diameter of 0.1 mm and 2mm space. In  the measurement of the wave velocity in 
the dominant direction of wave propagation, the linear array of the wave gauges 
was parallel to the longitudinal direction of the flume (figure 1) .  The linear array of 
wave gauges was also used for measuring the directional spectra of wind waves by 
changing the direction of the array (Cummins 1959). However, the details of the 
measurements of the directional wave spectra will be published in another paper, 
and only a part of the results will be used in the present analysis. 

Experimental procedure 

Winds with three different speeds U = 10, 12.5 and 15m/s were used for generating 
wind waves with different spectral peak frequencies. Here U is a cross-sectional 
mean speed of the wind in the generation area of the flume. Wind-generated waves 
propagate from the generation area to the decay area in the latter half of the flume 
and are finally absorbed by the wave absorber installed at the end of the flume where 
the width of the flume is widened from 0.6 to 1 m. The reflexion of the waves was 
approximately below 3 yo. In  each run, waves were measured continuously for 13 min 
at the location shown in figure 1, and wave signals from twelve gauges were recorded 
on a FM data recorder. 

3. Analysis of the wave data 
The twelve wave records of each run were digitized simultaneously a t  a sampling 

frequency of 40Hz. For the convenience of the spectral analysis, each of the wave 
data was divided into ten sub-samples of 51.2 s, which contained 2048 data points. In  
order to measure the phase velocity of the spectral components, cross-spectra 

Cr(w,  1)  = CO(W, 1) - i&(w, I )  (3.1) 

were computed through the fast Fourier transform procedure, by using the first wave 
data y1 nearest to the generation area and the succeeding wave data qn (n = 2,3,  . . . ,12) .  
Here, w is the angular frequency and 1 is the spacing between any two wave gauges. 

In  this way, we can compute the cross-spectra of waves measured a t  two points of 
different spacing (1 = 4, 8, 12, . . . cm) along the dominant direction of wave pro- 
pagation. Final data of the cross-spectra were obtained by taking sample mean of 
ten sub-samples of raw wave spectra and taking moving average of successive seven 
line spectra. Hence, equivalent degrees of freedom of the measured spectra are 
approximately 140. By using the cross-spectra of waves, the phase lag O(w,Z), the 
coherence coh (w,Z) and the phase velocity C(W) of the spectral components were 
determined as 

O(w, I )  = tan-l[&(w, l ) /Co(o,  l ) ] ,  (3.2) 
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FIUURE 2. Power spectra and coherence of two wave records vl and vr ( I  = 4cm), 

and normalized phase velocity of the spectral component for U = 10 m/s. 

and c(@) = oz/e(w, I ) ,  (3.4) 
where h l , ( w )  and +r(n,(w) are the frequency spectra of !ql and 7, respectively. 

4. Experimental results 
Typical examples of the measured results are shown in figures 2-4. From the top 

to the bottom, power spectra at two stations, normalized phase velocity C/C, and 
coherence are shown respectively as a function of the frequency f. Here, Co is the phase 
velocity of long-crested linear waves in finite depth h, which is given by 

g 2nh 
C --tanh-, 

O - w  L 
where g is the acceleration due to gravity and L is the wavelength. 
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FIGURE 3. The sBme ae figure 2 except for wave records and vp ( I  = 12 cm). 

Power spectra 
Since the attenuation of the spectral energy is very small for relatively short distance 
of propagation ( I  5 12 cm), power spectra a t  two stations almost coincide with each 
other. Spectral peak frequency f, is 2.7 Hz for the waves generated by a wind with 
U = lOm/s, and 1-8Hz for those generated by a wind with U = 15m/s. With the 
increase of the distance of wave propagation, attenuation of the wave energy ceases 
to be negligible. However, this problem will be discussed in another paper. 

Coherence 

The coherence of the waves measured at two stations are nearly unity for the frequency 
components near the spectral peak frequency f, when the distance between two wave 
gauges is relatively short ( I  = 4,12  cm). Although the data for very long distances are 
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FIGURE 4. The same as figure 2 except for wave records q1 and q4 

(1 = 12cm) and U = 15m/s. 

not shown in these figures the coherence near f, decreases gradually with the in- 
crease of the distance between two wave gauges aa will be shown later in figure 9. The 
coherence also decreases gradually with the increase of the frequency of the spectral 
component. In  addition to such gradual decreases, very rapid decrease of the coher- 
ence can be seen locally near 4.8 and 8.5Hz for U = 10m/s, and near 3.4Hz for 
U = 15 m/s. These frequencies of local drops of the coherence correspond roughly to 
twice or three times the spectral peak frequency f,. 

Phase velocity 

The normalized phase velocity C/C, is nearly equal to but slightly larger than unity 
in a relatively wide frequency range near the spectral peak frequency. That is, the 
phase velocities of energy-containing components of random waves are fairly close to 
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those for the long-crested linear waves. It will be shown later that slight differences 
between C and C, can be attributed to the effect of angular spreading of random waves. 
However, the rapid increase of C/C, appears a t  the frequencies where the local decrease 
of the coherence is observed. Particularly, the increase of C/C, is very rapid for 
relatively large spacing of the wave gauges. These peculiar features of the coherence 
and phase velocity are attributed to the nonlinear effects of the random wave field 
which will be discussed later. Anomalous values of C/C,  at 1-6 Hz, which are observed 
for U = 10 m/s, can be attributed to the transverse oscillation of water in the flume. 
Although the amplitude of the transverse oscillation is very small, it  cannot be 
negligible when the spectral density of wind-generated waves is very small at that 
frequency. In  fact, such phenomena are not seen for U = 15 m/s, because the spectral 
density of wind-generated waves has much larger values than those for U = 10m/s 
at that frequency. 

5. Theoretical computations 
In order to apply the nonlinear theory presented in I to the analysis of our measured 

waves, it  is necessary to separate the measured spectrum Yobs(o) into the spectrum 
of the free waveY,(w) and that of the forced waveY,(w) : 

The separation can be done by the iterative method presented in I, where the angular 
distribution function S(w, 0) in equation (3.8) of I is assumed as 

S'(rn) cosrnO for 101 G 

for 101 > an, 
S(w,O)  = 

where S'(m) is a normalizing function. 
Practical computations are summarized as follows: we assume rn = 2, 4, 6 for the 

angular distribution function (5.2), compute Y , ( w )  and Y,(w) by the iterative method 
presented in I, and determine the cross spectrum Cr(w,  1) [ = Cr,(w, 1) + Cr2(w, 13) by 
substituting\T,(w), Y , ( w )  and S(w,0)  into equation (2.30) of I. Finally, in order to 
compare the theory with the measurements, the coherence and the phase velocity are 
computed from (3.3) and (3.4) by using the cross spectrum. In the first order (linear) 
approximation, only Y1(w) and thus Cr,(w, 1) are used in the above computations. In 
the third-order approximation we consider the nonlinear dispersion relation and use? 

S ( J k l  -w2/9++J,  @)I, (5.3) 

instead of S( 1 k( - w2/g) ,  where E ( W ,  0) is an increment of I k /  deduced by the nonlinear 
dispersion relation (2.23) of I. 

Since the nonlinear effects for the phase velocity of deep-water waves is given by 

AC = C-C, = w/lkl - g / w ,  (5.4) 

we can evaluate AC by computing the right-hand side of equation (2.24) of I. Several 
examples of the computed results are shown in figures 5 and 6, where the measured 
frequency spectrum is used for the computation and S(w, 6) is assumed as 

S(w,0) - ~ 0 ~ ~ 6 .  

25 

t It should be noted that g has been taken as nnity in part 1 for convenience. 
F L I d  92 
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FIGURE 5. The change in the phase velocity of the spectral component AC/Co vs. normalized 
frequency f/f, for our measured wave spectrum ( U  = 15m/s, wave ql). -, computed for the 
angular distribution function S(0) N c0s4 8;  0, computed for the unidirectional wave spectrum. 
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FIGURE 6. The change in phase velocity of the spectral component AC/Co 
vs. 8 the propagation direction for various f Ifm. 

A more general representation is given in figure 7 ,  which shows contours of AC/C, 
normalized by the strength of nonlinearity E,(2nfm)4/g2 as a function off /fSb and 8, 
where E ,  is the total energy of the free waves. A curve in the left-hand side of figure 7 
shows the corresponding spectrum of the free wave Yl( f /fm) in an arbitrary density 
scale which has been determined from the measured spectrum by the iterative method. 
From these figures we can evaluate the influence of the nonlinearity on the phase 
velocity of spectral components as a function of its relative frequency f l f ,  and pro- 
pagation direction 8. Figure 5 shows that the nonlinear effect on the phase velocity 
of free waves is at most 20 yo for the spectral components in a dominant part of our 
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FIGURE 9. Comparison of the linear theory (-) with the measured coherence at the spectral 
peak frequency f m  (0) plotted against kl ( = 27rZ/L) for (a) U = 10m/s and (b)  U = 15m/s. 
The angular distribution function is assumed as S(0) N cosm 0, m = 2,4,6.  

measured spectrum ( f / f m  5 3). It will be shown later that the much larger increase in 
our measured phase velocity a t  f/f, 2 1.8, can be largely attributed to the effect of 
forced waves. 

6. Comparison between theory and measurements 
Effects of angular spreading 

First, the effects of angular spreading of waves on the phase velocity and coherence 
are studied by comparing the measured results with the predictions of the theory. 
Since nonlinear effects are expected to be relatively small near the spectral peak 
frequency, phase velocity and coherence were calculated by using the cross-spectrum 
of linear free waves Crl(u,l). That is, theoretical calculations were done within a 
frame of linear theory. Figure 8 shows an example of the results, where the angular 
dist,ribution function is assumed as cosme, m = 2, 4, 6. The figure shows that the 
angular distribution function of the form C O S ~  0 gives the best fit to the data both for 
C/C, and for the coherence near the spectral peak frequency ( f / f m  g 1). Such a 
comparison was also made for the data of cther cases: different spacings of wave 
gauges and different wind speeds. It was found that the linear theory can explain the 
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FIGURE 10. Exa.mples of the measured angular distribution function, ( +). -, 

S(8) N COP 8. (a) m = 4 for U = 10 m/s, (b)  m = 2 for U = 15 m/s. 

measured data in the following frequency range: f/fm = 0.8 to 1.6 for U = 10m/s, 
andflf,,' = 0.9 to 1.3 for U = 15m/s. 

It was also found that the angular distribution function of the form c0s4 8 fits the 
data of the former case and that of the form cos28 fits the data of the latter case. 
Figure 9 shows the relation between the coherence of the freGuency components a t  the 
spectral peak and the separation distance of wave gauges. The distance 1 to the 
direction of wave propagation is normalized in the form kl ,  where k = 2 n / L  is the 
wavenumber. The relations predicted by the linear theory are also shown in the same 
figure, where the angular distribution function was assumed again as S ( m )  cosm 8, 
m = 2, 4, 6. Figure 9 shows that the angular distribution function ~ 0 ~ ~ 8  fits the 
data for U = 10m/s and cos28 fits the data for U = 15m/s. Assumptions for the 
angular distribution functions were verified in figure 10 by comparing the idealized 
form (5.2) with the distributions measured directly by the technique of rotational 
linear array (Cummins 1959). 

It should be noted, however, that a t  large separation distance of wave gauges 
(kl > 5 )  the power m changes gradually with the increase of the separation distance. 
Closer investigation of the original data of the coherence showed that such phenomena 
are related to the attenuation of spectral energy. With increasing distance between 
two wave gauges the attenuation of the wave energy near the spectral peak increases 
gradually. Slight but anomalous decrease of the coherence was found in a frequency 
range where the attenuation of the wave energy was considerable. 
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FIGURE 11. Comparison of the nonlinear theory with observational data. Normalized phase 
velocity C/C,, coherence and normalized power spectra $(f)f,,,/E for U = 10m/s and I = 4 cm. 
Curve [Z ]  is a second-order approximation to the nonlinear theory. 

Nonlinear effects 

Although the linear theory of two-dimensional random waves shows a fairly good 
agreement with our measurements, the validity is confined only to the dominant part 
of the wave spectrum near the spectral peak. That is, neither rapid increase of the 
phase velocity nor corresponding local decrease of the coherence can be explained by 
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FIUURE 12. The same as figure 10 except for U = 10mjs and 1 = 12cm. 

the linear theory. Therefore, the results are compared, in the next step, with the 
nonlinear theory presented in I. 

Figures 11-13 show the results of such comparisons. Each figure shows, from the 
top to the bottom, the normalized phase velocity C/C,, the coherence, and the nor- 
malized power spectrum Yfm/E at the upward station, respectively, as the function 
of a dimensionless frequency f/f,. Here, E is the total energy of the wave spectrum. 
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In  each figure, the curve [2] corresponds to the prediction of the second-order theory 
of two-dimensional random waves. The angular distribution function was assumed to 
be proportional to C O S ~  19 for U = 10 m/s, and cos2 8 for U = 15 m/s. These figures show 
an exceedingly good agreement between the nonlinear theory and the present measure- 
ments. 
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FIQURE 14. Power spectrum, and phase velocity (data are the same as those shown in figure 13). 
[l] is a one-dimensional linear theory, [2] and [3] are a second-order approximation and a third- 
order approximation respectively, to the two-dimensional nonlinear theory. 

For the case of U = 15 m/s, two theoretical curves, the second-order approximation 
denoted by [2] and the third-order approximation denoted by [3], are compared with 
the measurements because the nonlinearity of the waves is larger in this case 
(7J = 15m/s) than in the other case ( U  = lOm/s). As expected, the third-order 
approximation shows better agreement with the measurement. 

From the results shown in figures 11-13 we can conclude that every results of our 
measurements can be explained by the nonlinear theory of two-dimensional random 
waves presented in I. Furthermore, it can be seen that the spectral energy near the 
frequency f / f m  = 2 can be largely attributed to the nonlinear effects. In  other words, 
they are mostly due to the forced waves and not to the free waves. A very rapid 
increase of C/Co and a rapid local decrease of the coherence occur at the frequency 
where the spectral density of the free waves Y1 coincides with that of the forced waves 
Y,. It can be seen from comparison of figure 11 with figure 12 that the increase of 
C/Co near f / f m  = 1.8 is very rapid for the latter case ( 1  = 12 cm) as compared to the 
former case (1  = 4 cm). Such a difference can be attributed to  the effect of the spacing 
of the wave gauges. A simple calculation (Fee appendix) shows that the change in 
C/Co is relatively gradual for the case of narrow spacing of wave gauges but it becomes 
very rapid for the case of the wide spacing. When kl = 27r, the change of C/Co becomes 
discontinuous a t  a = 1.  

It is also quite natural that the measured C/Co is approximately 2 for the frequency 
range 1-8 < f / f m  < 3, because the spectral components in this range are almost 
entirely due to the forced waves accompanied by the dominant waves in a frequency 
range 0.9 < f / f m  < 1.5. 
An example of the dimensional expression of t?ie present results is shown in figure 
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FIGURE 15. Comparison of the observational data with two-dimensional linear theory [l] and 
two nonlinear theories: two-dimensional theory [ Z ]  (Masuda et al. 1979) ; and one-dimensional 
theory (Tick 1959). The data are the same as in figure 11. 

14 to compare our present results with those of the other investigators (Yefimov et al. 
1972; Ramamonjiarisoa 1974). Here again we can see a satisfactory agreement 
between the nonlinear theory and the experiment in the decay area. Slight differences 
between our results and those of the other investigators can be attributed to the 
different spacing of wave gauges and the effect of drift current. 
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In  order to determine the individual or combined effects of the various factors 
affecting the wave velocity, computations were done by using a linear model of two- 
dimensional waves (Yefimov et al. 1972), a nonlinear model of one-dimensional waves 
(Tick 1959) and our nonlinear model of two-dimensional waves (Masuda et al. 1979). 
The results of each computation are compared with our measurements in figure 15. 
As may be seen from the figure, a nonlinear model of two-dimensional waves shows 
the best fit to the data. Tick’s model describes the behaviour of the phase velocity 
fairly well but fails to predict that of the coherence. The linear model can be applied 
only to the dominant part of the spectrum. 

Some remarks should be added to these conclusions. The present experiment is 
confined to wind waves in the decay area. Therefore, it is quite natural that we need to 
consider the effects of the drift current in the analysis of the phase velocity of wind 
waves in the generation area. In  fact, according to our preliminary analysis of the 
wave data in the generation area, the relative phase velocity C/Co changes gradually 
from C/C, = 1 a t  f / f m  = 1 to C/Co = 2 at f / f m  = 2. That is, the rapid change of C/Co 
near f / f m  = 1.8 is not observed, which is mainly owing to the effects of the drift 
current. Furthermore, the ratio of the free wave components to the forced wave 
components may be different for wind waves in the generation area. 

7. Conclusions 
The conclusions of this study are summarized as follows. For wind waves in the 

decay area, the phase velocity and the coherence of the energy-containing com- 
ponents near the spectral peak are very close to those given by the linear theory. 
However, spectral energy in a high frequency region (f > 1.8 f,) is largely due to the 
second-order (forced) waves and contributions of the free waves are relatively small. 
The rapid increase of the phase velocity and the rapid local decrease of the coherence 
occur at. a frequency near 1.8 f,, both of which are due to the effects of the second- 
order (forced) waves coexisting with the free waves. 

When we apply the present results to the analysis of wind waves in the generation 
area, we need to consider the effects of the drift current, since the present results are 
obtained by waves unaffected by the drift current. 

The authors are indebted to Mr T. Honda, Mr K. Eto and Mr M. Tanaka for their 
assistance in the laboratory experiment, and to Miss N. Uraguchi and Miss M. Hojo 
for typing the manuscript. They also wish to express their appreciation to Dr H. 
Honji for his invaluable comments on the first draft of the paper. 

Appendix 
Let us consider the random wave field of the form 

r(z,t) = A(w)exp 

where A and B are uncorrelated random amplitudes of free and forced waves res- 
pectively. The first term corresponds to one free wave and the second to the second 
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which propagates twice as fast as the first free wave. 

~ ( 1 ,  t ) ,  is given, in a normalized form, as 
The phase velocity determined from the cross-spectrum of wave data q(0,t)  and 

(A 3) 
sin w2Z/g + a sin w / { cos w21/g + a cos w21/2g 21 ”I ’ 

c 0’ - = - Z/tan-l 
co 9 

where a is the ratio of the forced wave energy (B2)  to the free wave energy (A2) at 
fixed w ,  and C, = g/w.  

The relation between C/C, and a, which is given by (A 3), is shown in figure 16, 
where a relative spacing 1/L ( = w2Z/2ng) is taken as a parameter. Figure 16 shows that 
C/C, is very close to unity if the free wave energy is much larger than the forced wave 
energy, i.e. a 4 1, whereas in the opposite case, a $- 1, C/C, becomes very close to 
two. Moreover, C/C, increases very rapidly near a = 1 and the increasing rate is larger 
for the case of larger spacing of the wave gauges. 

REFERENCES 

BARRICK, D. E. & WEBER, B. L. 1977 On the nonlinear theory for gravity waves on the ocean’s 
surface. Part 11. Interpretation and applications. J .  Phys. Oceanog. 7 ,  11-21. 

CUMMINS, W. E. 1959 The determination of directional wave spectra in the TMB maneuvering- 
seakeeping basin. Navy Dept. David Taylor Model Basin Rep. 1362. 

HASSELMANN, K. 1962 On the nonlinear energy transfer in a gravity-wave spectrum. Part 1. 
General theory. J .  Fluid Mech. 12, 481-500. 

HUANG, N. E. & T m a ,  C. 1976 The dispersion relation for a nonlinear random gravity wave 
field. J .  Fluid Mech. 75,  337-345. 

HUANG, N. E. & TUNG, C. 1977 The influence of the directional energy distribution on the 
nonlinear dispersion relation in a random gravity wave field. J .  Phys. Oceanog. 7 ,  403-414. 



The dispersion relation for random gravity waves. Part 2 749 

&TO, H. 1974 Calculation of the wave speed for a logarithmic drift current. Rep. Port and 
Harbour Res. Inst. 13, 3-32. 

LONCUET-HIGGINS, M. S. & PHILLIPS, 0. M. 1962 Phase velocity effects in tertiary wave 
interactions. J .  Fluid Mech. 12, 333-336. 

MASUDA, A., KWO, Y.-Y. & MITSUYASU, H. 1979 On the dispersion relation of random gravity 
waves. Part 1. Theoretical framework. J .  Fluid Mech. 92, 717-730. 

PHILLIPS, 0. M. 1960 On the dynamics of unsteady gravity waves of finite amplitude. Part 1. 
The elementary interactions. J .  Fluid Mech. 9, 193-217. 

RAMAMONJIARISOA, A. 1974 Contribution it 1’6tude de la structure statistique et  des m6canismes 
de g6n6ration des vagues de vent, Ph.D. thdse, l’Universit6 de Provence, Institute de 
MBcanique Statistique de la Turbulence. 

SHEMDIN, 0. H. 1972 Wind-generated current and phase speed of wind waves. J .  Phys. Oceanog. 

TICK, L. J. 1959 A nonlinear random model of gravity waves. I. J .  Math. Mech. 8 ,  643-651. 
WEBER, B. L. & BARRICK, D. E. 1977 On the nonlinear theory fur gravity waves on the ocean’s 

surface. Part I. Derivations. J .  Phys. Oceanog. 7 ,  3-10. 
YEFIMOV, V. V., SOLOV’YEV, Yu. P. & KHRISTOFOROV, G. N. 1972 Observational determination 

of the phase velocities of spectral components of wind waves. Isv. A t m s .  Oceanic Phys. 

2, 411-419. 

8, 435-446. 


